1,039 research outputs found

    Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes

    Get PDF
    Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be considered. Here we use an elastic network model-guided molecular dynamics simulation protocol to generate an ensemble of conformers of a prototypical GPCR, β2-adrenergic receptor (β2AR). The resulting conformers are clustered into groups based on the conformations of the ligand binding site, and distinct conformers from each group are assessed for their binding to known agonists of β2AR. We show that the select ligands bind preferentially to different predicted conformers of β2AR, and identify a role of β2AR extracellular region as an allosteric binding site for larger drugs such as salmeterol. Thus, drugs and ligands can be used as "computational probes" to systematically identify protein conformers with likely biological significance. © 2012 Isin et al

    Cytogenetic characterization of two species of Frieseomelitta Ihering, 1912 (Hymenoptera, Apidae, Meliponini)

    Get PDF
    The cytogenetic analysis of Frieseomelitta dispar and F. francoi revealed the chromosome numbers 2n = 30 and n = 15 and a karyotypic formula 2K = 4M+2Mt+4A+20AM. The number of chromosomes observed was consistent with those reported for other Frieseomelitta species. The occurrence of the Mt chromosome and other features of the karyotype formulae suggest a close relationship between F. dispar, F. francoi and F. varia. Nevertheless, it was possible to differentiate the karyotypes of the species by DAPI/CMA3 staining, which revealed GC-rich regions on two chromosome pairs of F. dispar: one acrocentric and one pseudoacrocentric. In F. francoi, the same kinds of regions were observed on a pair of metacentrics and on a pair of acrocentrics. Our analysis also confirmed the chromosome number conservation in Frieseomelitta and suggests that infrequent pericentric inversion could constitute a synapomorphy for the group including F. dispar, F. francoi, and F. varia

    Visuo-spatial ability in colonoscopy simulator training

    Get PDF
    Visuo-spatial ability is associated with a quality of performance in a variety of surgical and medical skills. However, visuo-spatial ability is typically assessed using Visualization tests only, which led to an incomplete understanding of the involvement of visuo-spatial ability in these skills. To remedy this situation, the current study investigated the role of a broad range of visuo-spatial factors in colonoscopy simulator training. Fifteen medical trainees (no clinical experience in colonoscopy) participated in two psycho-metric test sessions to assess four visuo-spatial ability factors. Next, participants trained flexible endoscope manipulation, and navigation to the cecum on the GI Mentor II simulator, for four sessions within 1 week. Visualization, and to a lesser degree Spatial relations were the only visuo-spatial ability factors to correlate with colonoscopy simulator performance. Visualization additionally covaried with learning rate for time on task on both simulator tasks. High Visualization ability indicated faster exercise completion. Similar to other endoscopic procedures, performance in colonoscopy is positively associated with Visualization, a visuo-spatial ability factor characterized by the ability to mentally manipulate complex visuo-spatial stimuli. The complexity of the visuo-spatial mental transformations required to successfully perform colonoscopy is likely responsible for the challenging nature of this technique, and should inform training- and assessment design. Long term training studies, as well as studies investigating the nature of visuo-spatial complexity in this domain are needed to better understand the role of visuo-spatial ability in colonoscopy, and other endoscopic techniques

    Comparative Analysis of the Heptahelical Transmembrane Bundles of G Protein-Coupled Receptors

    Get PDF
    Background: G protein-coupled receptors represent a large family of eukaryotic membrane proteins, and are involved in almost all physiological processes in humans. Recent advances in the crystallographic study of these receptors enable a detailed comparative analysis of the commonly shared heptahelical transmembrane bundle. Systematic comparison of the bundles from a variety of receptors is indispensable for understanding not only of the structural diversification optimized for the binding of respective ligands but also of the structural conservation required for the common mechanism of activation accompanying the interaction changes among the seven helices. Methodology/Principal Findings: We have examined the bundles of 94 polypeptide chains from almost all available structures of 11 receptors, which we classified into either inactivated chain or activated chain, based on the type of bound ligand. For the inactivated chains, superposition of 200 residue bundles by secondary structure matching demonstrated that the bound ligands share a laterally limited cavity in the extracellular section of the bundle. Furthermore, a distinct feature was found for helix III of bovine rhodopsin, which might have evolved to lower its activity in the presence of 11-cis-retinal, to a level that other receptors could hardly achieve with any currently available ligands. Conclusions/Significance: Systematic analysis described here would be valuable for understanding of the rearrangement o

    Quaternary structure of a G-protein coupled receptor heterotetramer in complex with Gi and Gs

    Get PDF
    Background: G-protein-coupled receptors (GPCRs), in the form of monomers or homodimers that bind heterotrimeric G proteins, are fundamental in the transfer of extracellular stimuli to intracellular signaling pathways. Different GPCRs may also interact to form heteromers that are novel signaling units. Despite the exponential growth in the number of solved GPCR crystal structures, the structural properties of heteromers remain unknown. Results: We used single-particle tracking experiments in cells expressing functional adenosine A1-A2A receptors fused to fluorescent proteins to show the loss of Brownian movement of the A1 receptor in the presence of the A2A receptor, and a preponderance of cell surface 2:2 receptor heteromers (dimer of dimers). Using computer modeling, aided by bioluminescence resonance energy transfer assays to monitor receptor homomerization and heteromerization and G-protein coupling, we predict the interacting interfaces and propose a quaternary structure of the GPCR tetramer in complex with two G proteins. Conclusions: The combination of results points to a molecular architecture formed by a rhombus-shaped heterotetramer, which is bound to two different interacting heterotrimeric G proteins (Gi and Gs). These novel results constitute an important advance in understanding the molecular intricacies involved in GPCR function

    How can humans understand their automated cars? HMI principles, problems and solutions

    Get PDF
    As long as vehicles do not provide full automation, the design and function of the Human Machine Interface (HMI) is crucial for ensuring that the human “driver” and the vehicle-based automated systems collaborate in a safe manner. When the driver is decoupled from active control, the design of the HMI becomes even more critical. Without mutual understanding, the two agents (human and vehicle) will fail to accurately comprehend each other’s intentions and actions. This paper proposes a set of design principles for in-vehicle HMI and reviews some current HMI designs in the light of those principles. We argue that in many respects, the current designs fall short of best practice and have the potential to confuse the driver. This can lead to a mismatch between the operation of the automation in the light of the current external situation and the driver’s awareness of how well the automation is currently handling that situation. A model to illustrate how the various principles are interrelated is proposed. Finally, recommendations are made on how, building on each principle, HMI design solutions can be adopted to address these challenges

    Childhood socioeconomic position and objectively measured physical capability levels in adulthood: a systematic review and meta-analysis

    Get PDF
    <p><b>Background:</b> Grip strength, walking speed, chair rising and standing balance time are objective measures of physical capability that characterise current health and predict survival in older populations. Socioeconomic position (SEP) in childhood may influence the peak level of physical capability achieved in early adulthood, thereby affecting levels in later adulthood. We have undertaken a systematic review with meta-analyses to test the hypothesis that adverse childhood SEP is associated with lower levels of objectively measured physical capability in adulthood.</p> <p><b>Methods and Findings:</b> Relevant studies published by May 2010 were identified through literature searches using EMBASE and MEDLINE. Unpublished results were obtained from study investigators. Results were provided by all study investigators in a standard format and pooled using random-effects meta-analyses. 19 studies were included in the review. Total sample sizes in meta-analyses ranged from N = 17,215 for chair rise time to N = 1,061,855 for grip strength. Although heterogeneity was detected, there was consistent evidence in age adjusted models that lower childhood SEP was associated with modest reductions in physical capability levels in adulthood: comparing the lowest with the highest childhood SEP there was a reduction in grip strength of 0.13 standard deviations (95% CI: 0.06, 0.21), a reduction in mean walking speed of 0.07 m/s (0.05, 0.10), an increase in mean chair rise time of 6% (4%, 8%) and an odds ratio of an inability to balance for 5s of 1.26 (1.02, 1.55). Adjustment for the potential mediating factors, adult SEP and body size attenuated associations greatly. However, despite this attenuation, for walking speed and chair rise time, there was still evidence of moderate associations.</p> <p><b>Conclusions:</b> Policies targeting socioeconomic inequalities in childhood may have additional benefits in promoting the maintenance of independence in later life.</p&gt

    Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere

    No full text
    It is widely accepted that Earth’s early atmosphere contained less than 0.001 per cent of the present-day atmospheric oxygen (O2) level, until the Great Oxidation Event resulted in a major rise in O2 concentration about 2.4 billion years ago1. There are multiple lines of evidence for low O2 concentrations on early Earth, but all previous observations relate to the composition of the lower atmosphere2 in the Archaean era; to date no method has been developed to sample the Archaean upper atmosphere. We have extracted fossil micrometeorites from limestone sedimentary rock that had accumulated slowly 2.7 billion years ago before being preserved in Australia’s Pilbara region. We propose that these micrometeorites formed when sand-sized particles entered Earth’s atmosphere and melted at altitudes of about 75 to 90 kilometres (given an atmospheric density similar to that of today3). Here we show that the FeNi metal in the resulting cosmic spherules was oxidized while molten, and quench-crystallized to form spheres of interlocking dendritic crystals primarily of magnetite (Fe3O4), with wüstite (FeO)+metal preserved in a few particles. Our model of atmospheric micrometeorite oxidation suggests that Archaean upper-atmosphere oxygen concentrations may have been close to those of the present-day Earth, and that the ratio of oxygen to carbon monoxide was sufficiently high to prevent noticeable inhibition of oxidation by carbon monoxide. The anomalous sulfur isotope (Δ33S) signature of pyrite (FeS2) in seafloor sediments from this period, which requires an anoxic surface environment4, implies that there may have been minimal mixing between the upper and lower atmosphere during the Archaean

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Overweight across the life course and adipokines, inflammatory and endothelial markers at age 60-64 years: evidence from the 1946 birth cohort.

    Get PDF
    BACKGROUND/OBJECTIVES: There is growing evidence that early development of obesity increases cardiovascular risk later in life, but less is known about whether there are effects of long-term excess body weight on the biological drivers associated with the atherosclerotic pathway, particularly adipokines, inflammatory and endothelial markers. This paper therefore investigates the influence of overweight across the life course on levels of these markers at retirement age. SUBJECTS/METHODS: Data from the Medical Research Council National Survey of Health and Development (n=1784) were used to examine the associations between overweight status at 2, 4, 6, 7, 11, 15, 20, 26, 36, 43, 53 and 60-64 years (body mass index (BMI)⩾25 kg m(-2) for adult ages and gender-specific cut-points for childhood ages equivalent to BMI⩾25 kg m(-2)) and measurements of adipokines (leptin and adiponectin), inflammatory markers (C-reactive protein (CRP), interleukin-6 (IL-6)) and endothelial markers (E-selectin, tissue plasminogen activator (t-PA) and von Willebrand factor) at 60-64 years. In addition, the fit of different life course models (sensitive periods/accumulation) were compared using partial F-tests. RESULTS: In age- and sex-adjusted models, overweight at 11 years and onwards was associated with higher leptin, CRP and IL-6 and lower adiponectin; overweight at 15 years and onwards was associated with higher E-selectin and t-PA. Associations between overweight at all ages earlier than 60-64 with leptin, adiponectin, CRP and IL-6 were reduced but remained apparent after adjustment for overweight at 60-64 years; whereas those with E-selectin and t-PA were entirely explained. An accumulation model best described the associations between overweight across the life course with adipokines and inflammatory markers, whereas for the endothelial markers, the sensitive period model for 60-64 years provided a slightly better fit than the accumulation model. CONCLUSIONS: Overweight across the life course has a cumulative influence on adipokines, inflammatory and possibly endothelial markers. Avoidance of overweight from adolescence onwards is likely important for cardiovascular disease prevention
    corecore